Comparative performance of manual weeders under system of rice intensification in Indo-Gangetic plains

ICAR-Research Complex for Eastern Region, ICAR Paristar, P.O: B.V. College, Patna, Bihar 800 014

Received: 19 January 2017; Revised: 19 March 2017

Key words: SRI, weeder, field capacity, weeding efficiency

Rice (Oryza sativa L.) is grown under diverse ecologies ranging from irrigated to rainfed upland, lowland and deep water. Traditional crop establishment, i.e. puddling and transplanting, requires large amount of water, energy and labour, which are becoming scarce and expensive (Mishra and Singh 2012). Weeds are considered to be one of the major biotic constraints in achieving the higher crop productivity as they cause a reduction of 10-90% grain yield in rice field (Kumar et al. 2016). System of Rice Intensification (SRI) is a modern and alternative method of rice cultivation for reduced use of seed, water and labour and to increase the crop productivity. But this system is much infested with weeds because growing under the limited water management. E. chinochloa spp., Cynodon dactylon, Portulaca quadrifida and Cyperus spp. are the major weeds associated with SRI. Herbicides were proved effective but the continuous and indiscriminate use of herbicides for a longer period may result in build-up of problematic weeds and development of herbicide resistance. Adoption of rotary or cono-weeder use in SRI plays a significant role in improving the growth, yield and economics of rice. Weed management with improved tools not only uproot the weeds between crop rows but also ensuring the better soil aeration. Different type of weeders are available for weeding but all these designs are location specific and designed to meet the requirement of soil type, crop grown, cropping pattern and availability of the local resources (Goel et al. 2008). Hence, performance of promising manual weeders was evaluated in SRI under the middle Indo-Gangetic plains.

A field experiment was conducted at ICAR Research Complex for Eastern Region, Patna (25°35' N latitude and 85° 04' E longitude) during the Kharif 2016 to study the performance of weeders i.e. cono and Mandava weeder under the irrigated ecosystem. Soil of the experimental plot was clay loam (sand: 23.69%, silt: 39.64% and clay: 37%). The climate of experimental site was sub-tropical in nature exhibiting high humidity and medium rainfall. The rice cv. ‘Pusa 1509’ (120 days duration) was used as test material. The monthly mean maximum and minimum temperature during the crop growing period ranged from 29.2 - 35.4°C and 12.2 - 23.2°C, respectively. The rice seedlings were transplanted at 25×25 cm apart. The specification of the experimental weeders is mentioned in Table 1.

Table 1. Specification of cono and Mandava weeder

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cono weeder</th>
<th>Mandava weeder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>2040</td>
<td>1500</td>
</tr>
<tr>
<td>Nominal width (mm)</td>
<td>194</td>
<td>Width (handle) (mm): 460</td>
</tr>
<tr>
<td>Working width (mm)</td>
<td>125</td>
<td>Nominal width: 150 mm</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>1120</td>
<td>Working width: 120 mm</td>
</tr>
<tr>
<td>Width (handle) (mm)</td>
<td>500</td>
<td>Height: 1000 mm</td>
</tr>
<tr>
<td>Type of handle</td>
<td>T-Type</td>
<td>Type of handle: T-Type</td>
</tr>
<tr>
<td>Number of rotors</td>
<td>02</td>
<td>Number of rotors: 01</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>6.1</td>
<td>Weight: 5.1 kg</td>
</tr>
<tr>
<td>Unit Cost (approx.)</td>
<td>1200/-</td>
<td>Unit Cost: 1000/-</td>
</tr>
</tbody>
</table>

Different test parameters were evaluated with formulae given as below:

Theoretical field capacity

Theoretical field capacity was calculated with standard formula as suggested by Mehta et al. (2005).

\[
\text{Theoretical field capacity} = \frac{\text{Working width} \times \text{Speed}}{10} \quad \text{(1)}
\]

Where, working width in m and speed in km/h

Effective field capacity: Effective field capacity is an average output of the weeder per hour and calculated from total area weeded in ha and the total work time (Mehta et al. 2005).

\[
\text{Effective field capacity} = \frac{\text{Area covered by weeder}}{\text{Total time taken} \times 10000} \quad \text{(2)}
\]

Where, Area covered in m² and total time in hr

Field efficiency: It is the ratio of the effective field capacity to theoretical field capacity and expressed in percent (%) and it was calculated by using the formula as suggested by Mehta et al. (2005).

\[
\text{Field efficiency} = \frac{\text{Effective field capacity}}{\text{Theoretical field capacity}} \times 100 \quad \text{(3)}
\]

*Corresponding author: jsmishra31@gmail.com
Comparative performance of manual weeders under system of rice intensification in Indo-Gangetic plains

Field capacity = \(\frac{W \times S \times E}{10} \) \(\times \frac{10}{10} \) (4)

Where, \(W \) = theoretical width of cut in m, \(S \) = speed of travel in km/h, \(E \) = field efficiency (%)

Weeding efficiency: Square loop (0.25 m\(^2\)) was randomly thrown to field and number of weeds including in loop was counted before and after weeding (Rangasamy et al. 1993). Three sets of observations were taken and weeding efficiency was calculated as below.

Weeding efficiency (%) = \(\frac{W_1 - W_2}{W_1} \times 100 \) (5)

Where, \(W_1 \) = number of weeds before weeding, \(W_2 \) = number of weeds after weeding

Plant damage: It was calculated by counting the number of injured plants and total number of plants in sample plot and expressed in per cent (%) (Biswas and Yadav 2004).

\(P_d = \frac{A}{B} \times 100 \).......................... (6)

Where, \(P_d \) = Plant damage (%), \(A \) = Injured plant (no.), \(B \) = Total no. of plant in sample plot

The human energy co-efficient 1.96 MJ was considered as suggested by De et al. (2001)

Pushing force measurement: The force requirement of operation was determined in field using spring balance and three persons involved in test (Figure 1). Spring balance was fixed between pulling wire and one person pulled weeder, while another person recorded data of spring balance and third person just held handle of weeder along with line of action.

\(\text{Draft} = \text{Pulldown Force} \times \cos \theta \) Eqn. (7)
\(\text{Pushing Force} = \frac{\text{Draft}}{\cos \theta} \) Eqn. (8)

Weed flora

Major weed associated with crop was grasses, broad-leaved weeds and sedges. Among grasses, *Echinochloa crus-galli* (L.), *Echinochloa colona* (L.) Link, *Eleusine indica* (L.) Gaertn., *Leptochloa chinensis* (L.) Nees, *Cynodon dactylon* (L.) Pers.; broad-leaved weeds (BLW) *Triandemha, portulacastrum* L., *Euphorbia hirta* L.; sedges viz. *Cyperus rotundus* L. and *Cyperus iria* L. were important weed flora during the experimentation. The relative dominance of BLWs, grasses and sedges was recorded as 84, 11 and 5%, respectively.

Field capacity of Mandava weeder was higher (0.0168 ha/hr) than cono-weeder (0.0149 ha/hr). The lower value of effective field capacity for cono-weeder was also reported by Shakya et al. (2016). The wide difference in the values of field capacity in both the weeders may be due to difference in width of cutting parts (blades) as well as forward speed. Mandava weeder facilitates worker by providing easy push and pull action to the implement as compared to cono-weeder. Field efficiency was higher with Mandava weeder (89%) as compared to cono-weeder (87%). Higher field efficiency of weeder was because of minimum time loss in turning and during operation (Shakya et al. 2016). Weed density of 84 and 96/m\(^2\) was recorded before weeding with the cono-weeder and Mandava weeder, respectively (Table 2). The maximum weeding efficiency was found with Mandava weeder (88%) as compared to cono-weeder (71%) which might be due to greater soil contact and soil inversion capacity of the weeder. The wide difference in the values of weeding efficiency in both weeders may be due to difference in shape of blades and depth of operation. The average value of plant damage factor for cono and Mandava weeder were obtained 7.58 and 6.17% respectively, which was 30% lower in developed cono-weeder reported by Shakya et al. (2016). Involvement of man power was examined with respect to weeder used in controlling weeds of rice under SRI and it was noted that Mandava weeder consumed the minimum man-days/ha (7.44).

Human energy: The highest human energy was consumed by cono-weeder (131.39 MJ/ha) as compared to Mandava weeder (116.65 MJ/ha). As, cono-weeder required the highest energy, it was not found to be economical in terms of eco-energetics (Table 3). But Mandava weeder was not only proved efficient in terms of eco-energetics but also useful in completing weeding in lesser time.

Pushing force measurement: Result showed that forces of 98°74’ N and 68°64’ N are required for 10

| Table 2. Weed density (no./m\(^2\)) and weed control efficiency (WCE) as affected by two weeders |
|---------------------------------|---------|--------------|-------------|---------|---------|---------|
| Weeder | Grasses (no. | Broad-leaved | Sedges (no. | Weed count (no./m\(^2\)) | Weed count (no./m\(^2\)) | Weeding efficiency (WCE %) |
| Cono-weeder | 71.0 | 9.24 | 4.20 | 84 | 24 | 71 |
| Mandava weeder | 80.64 | 10.56 | 4.80 | 96 | 12 | 88 |

83
and 30 mm water depth, respectively in cono-weeder, while in mandava-weeder; they were 89.38 N and 61.14 N, respectively (Table 4).

Ergonomics Evaluation: Ergonomic study was carried out with 5 male workers for weeding in SRI. Anthropometric rod and weighing balance were used to measure the physical characteristics and stop watch for recording time. Polar Heart Rate Monitor (RS-400, Finland) was used for recording heart rate of subject. To evaluate the weeding through ergonomic point of view, 5 workers in age group of 21 to 46 yrs were selected and average age as 33.8 yrs, body height of 167.8 cm and weight 66.60 kg, respectively (Table 5).

Physiological stress of weeding was determined on the basis of parameters i.e. heart rate during work and rest, energy expenditure and cardiac cost of work while performing activity (Table 6).

There was 10.4% increase in working efficiency with usage of the mandava weeder. The output recorded by Mandava weeder was 168 m²/hr as compared to cono-weeder (149 m²/hr). During weeding with cono and Mandava weeder, AHR was 27.6 and 24.4 beats/min, respectively. Energy expenditure was 8.57 kJ/s and cardiac cost 11.15 beats/m²2 for cono-weeder. However, in case of Mandava weeder it was found 7.68 kJ/s and 8.71 beats/m² of energy expenditure and cardiac cost, respectively. Manduva weeder saved 21.88% cardiac cost and increases efficiency 10.38%.

SUMMARY

Two weeding tools were evaluated in SRI. Maximum weeding efficiency was recorded with mandava weeder as compared to cono-weeder. Mandava weeder consumed minimum man-days/ha. Therefore, mandava weeder may be promoted at farmer’s fields in wider scale as it reduces energy use of small and marginal farming community of the Indo-Gangritic Plains of the Eastern India.

ACKNOWLEDGEMENTS

The senior authors sincerely acknowledge to the ‘Sir Jamsed Ji Tata Trusts’ Mumbai for technical and financial support to conduct the present study.

REFERENCES

