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ABSTRACT

In agriculture, the weed plant identification is a challenging task as it allows farmers to accurately recognize and remove the
same plants from their field. In India, conventional methods for detecting and removing weeds require considerable manual
labor and skill, resulting in a time-consuming and costly process. With recent advancements in machine learning and
computer vision, automated weed detection systems have become more prevalent. We worked an innovative method for
crop-weed classification and weed detection that utilizes a Convolutional Neural Network (CNN) to differentiate images
of plant into either weed or non-weed categories. The techniques we introduced were developed using an extensive dataset
containing 1300 images of sesame (Sesamum indicum L.) crops cultivated in farmlands of China. The proposed approach
evaluated on a dataset available on the Roboflow platform. We used ResNet50 architecture for image classification and
Faster-RCNN and YOLO (You Only Look Once) for object detection. The YOLOvV5 model’s performance was measured
by utilizing Precision (P), Recall (R), and the mean Average Precision (mAP) as performance evaluation metrics. The
proposed modified YOLOV5 model achieved the best overall performance within the “Weeds’ validation subset resulting in
aP (80.7), R (81.1), and mAP (86.4). This approach is suitable for bermudagrass, crabgrass and pigweed species of weeds
in sesame field. The proposed approach has several practical applications in agriculture, including weed management, crop
yield optimization, and environmental sustainability. Furthermore, it has potential use when integrated with other
precision farming equipment, making it a cost-effective solution for farmers. We concluded the efficacy of employing deep
learning methods for the detection of weed plants and suggest that it has the potential to revolutionize modern agriculture.
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INTRODUCTION

One of the most important factors of overall
crop productivity is weed. Weed competes with crop
for assets like water, space, nutrients and light.
This competition of weeds with crop plants
decreases yields and degrades production quality.
Weeds can also host diseases and pests, which can
further harm the crops (Singh and Gupta 2022).
Furthermore, weeds lower the quality of crops by
contaminating them with weed seeds or by making
them tough to harvest. The cost of controlling weeds
can also be important, as it often needs the herbicides
usage or manual work to eliminate them. The present
research indicates that the presence of weeds can
lead to a reduction in overall productivity ranging
from 10% to 90%, depending on the extent of the
infestation and the crop variety (Nurudeen et al.
2024). To mitigate their influence on crop yields and
maintain the sustainability of agricultural systems, it is
crucial to effectively manage weeds.
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Weed management plays a crucial role in all
crops. Managing weeds is an important task of
forestry practices and agriculture (Elhoseny et al.
2023), as an uncontrolled growth of weeds can
considerably reduce crop production and overall
quality (Alotaiby et al. 2022). Traditionally weeds are
being managed by several methods such as hand
weeding and overall chemical spraying but these
methods have proven as time-consuming, costly,
labor-intensive, and environmentally dangerous
(Shanmugam et al. 2021). Hence, it is necessary to
develop a precision weed management approach that
accurately detects weeds and controls them. The
overall objective of the weed plant detection method
is to identify and localize the presence of weeds
accurately in an image or video stream. Because of
the high variation in color, texture, appearance and
shape of weed species, along with their complexity,
this is a particularly difficult task.

With the growth of machine learning algorithms
and computer vision over the recent years, it is now
possible to develop automated systems for detecting
and identifying weeds in agricultural fields. By
providing timely and precise information about the
location and distribution of weeds, these systems can
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assist farmers in accurately detecting the weed
species and subsequently controlling them. This
approach leads to minimizing the use of herbicides,
and lowering production costs, increasing crop yields
and ensuring the sustainability of agricultural
systems. Numerous traditional machine-learning
approaches, relying on image processing methods
using classifiers such as K-Nearest Neighbor (KNN),
Random Forest (RF), Support Vector Machine
(SVM) and Decision Tree have been applied. These
approaches use various feature extraction techniques,
including shape, texture and color analysis, for the
detection and categorization of weeds. Furthermore,
with the help of deep learning algorithms, these
systems can learn from large datasets and gradually
improve their performance (Pallottino et al. 2022).

In this work, we explored deep-learning
techniques for detection and differentiation
classification of crop-weeds species. Specifically, we
use a CNN to discover weeds in high-resolution
imageries.

MATERIALS AND METHODS

The suggested approach involves several steps
represented in pictorial form as shown in Figure 1.
We conducted our experiments on a publicly
accessible dataset that is available on the Roboflow
platform. The study utilized a dataset of weed and
sesame crop images cultivated during the spring
season from row-based farmlands located in
Nanning, Guangxi, China. The images were acquired
during kharif season and under cloudy weather
conditions. The variety of sesame used in the study
was ‘Yuzhi 11’, which has a growth duration of
approximately 90-100 days (Jiging et al. 2022). The
dataset comprises 1300 images, each having a
resolution of 4000 by 3000 pixels. Images were
captured at various growth stages of the sesame
crop, including germination, vegetative, flowering,
and pod-filling stages. The crop was sown using the
line sowing method, with a crop geometry of 30 cm
row-to-row and 10 cm plant-to-plant distance. The
average plant population observed in the field was
approximately 330,000 plants per hectare. The weeds
observed in sesame crop includes Bermudagrass
(Cynodon dactylon), Crabgrass (Digitaria spp.),
Pigweeds (Amaranthus spp.) etc. We converted all
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Figure 1. Process flow of weed detection and classification
system

images to 640 x 640 x 3 pixel size. To reduce noise
and enhance the image contrastness, we pre-
processed the input image.

The dataset images were manually annotated to
discriminate between sesame crops and weeds using
the Labellmg tool. All image were meticulously
reviewed, and regions containing sesame crops and
weeds were labeled to create ground truth data with
precise locations and boundaries. Based on the shape,
color and texture features, the ground truth data
distinguishes between crop and weed. This approach
aligns with supervised learning, where the model is
trained on input-output pairs to learn the mapping
from inputs to the desired outputs. Deep learning
benefitted from automatic feature extraction via
layers of Convolutional Neural Networks (CNNs).

The YOLOV5 object detection model was
selected and trained on an extensive dataset to
enhance the model’s accuracy. The proposed work
evaluates performance in terms of accuracy,
precision, and recall, demonstrating their
effectiveness in detecting weeds and differentiating
them from sesame crop. To further improve the
performance of the proposed models, hyperparameter
fine-tuning was conducted. The dataset was divided
into testing (10%), validation (20%), and training
(70%) subsets. We used 900 images for training, 137
for testing and 263 images for validation purposes.

Image classification and object detection models

The proposed work utilized ResNet50 model for
image classification and Faster-RCNN, YOLOv5
model for object detection. Proposed model utilized
Transfer Learning (TL) methods on pre-trained
models ImageNet, VGG16 and ResNet50 leveraging
both the Keras and PyTorch frameworks.

A notable example of a two-stage object
detection framework is Faster R-CNN. Initially, it
generates region proposals through a Region Proposal
Network (RPN), followed by refining these proposals
for the ultimate purpose of object detection and
classification. YOLO stands as a renowned single-
stage object detection algorithm that processes the
entire image in one forward pass through a neural
network. Both Faster-RCNN and YOLOV5 primarily
uses the PyTorch framework. Faster R-CNN has
been implemented in other deep learning frameworks
as well, such as TensorFlow.

The YOLO architecture has consistently been a
widely accepted model for object recognition among
deep learning professionals. In June 2020, Ultralytics
introduced the state-of-the-art object detection model
YOLOV5. It represents an improvement over the
YOLOv4 framework, which is renowned for its
outstanding accuracy and ability to operate in real-time.
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Figure 2. Sample images of sesame crop and weed in the
dataset

YOLOV5 features a single-layer object detection
network with a CSPDarknet53 feature extractor as
the backbone. The model structure incorporates
several innovative elements like Spatial Pyramid
Pooling (SPP), PAN, and BiFPN, all contributing to
enhancing the effectiveness and accurateness of the
trained model. The YOLOvV5 model has attained
leading-edge performance on various benchmark
object detection datasets, including Pascal Visual
Object Classes (VOC) and Microsoft Common
Objects in Context (COCO) (Sportelli et al. 2023).

As shown in Figure 3, the YOLOVS5 architecture
relies on a fusion of a cross-stage partial network
(CSPNet) and the Darknet, which serves as its
foundational framework (C. Y. Wang et al. 2016). To
fulfill the requirements of the YOLO algorithm,
images were annotated using Labellmg tool.
Labellmg stores annotations in a variety of formats
such as XML, JSON, CSV, or text format (LOpez-
Correa et al. 2022). In YOLO, bounding box
information was stored in text file format following a
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Figure 3. Architecture of YOLOV5

particular syntax. The rectangular (bounding) box
were recorded on a separate line and included five
numerical values. The initial number indicated the
label of class, while the second and third numbers
denoted the x and y coordinates of the top-left corner
of the bounding box. The 4" and 5" numbers denoted
the bounding box’s width and height (Aanis Ahmad et
al. 2021).

The annotation process were applied to all plants
within the images, and all the relevant information of
annotations of bounding box were stored on a single
line of text.

We implemented our proposed methods in
Python using TensorFlow and OpenCV libraries. We
used a workstation with an Intel Core i3 CPU, 8GB of
RAM, and a Google Colab to train and evaluate our
models.

We have standardized the following hyper-
parameters across all experimental configurations for
YOLOVS.

e Training epochs: 100 and 150

e Solver type/Optimizer: SGD (Stochastic Gradient Descent)
¢ Input image size: 640

e Momentum: 0.937

e Batch size: 4

¢ Learning rate (LR) policy: Exponential decal

« Weight decay: 0.0004

¢ Base learning rate: 0.0001

¢ AutoAnchors: 3.51 anchors/target

To assess the efficiency of the suggested
approach, we employed the evaluation metrics:
accuracy in the form of mAP (mean Average
Precision), recall and precision.

Evaluation metrics

In this proposed work, we used precision, recall
and mAP as the evaluation criteria for training the
detection model (Jialin et al. 2019).

Precision is defined as the ratio of correctly
identified weeds of a specific species among the
expected weeds. Recall represented the percentage of
correctly predicted targets within a weed class within
the sample. The following is the formula (Tushar et
al. 2023):

True Positives

P = M

" True Positives + False Positives

True Positives

R= @)

" True Positives + False Negatives

In this context, True Positive (TP) denotes the
samples count correctly categorized as positive
samples, False Positive (FP) signifies the count of
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erroneously classified positive samples, and FN
represented for incorrectly classified negative
samples count.

The mAP represents the average of the
individual average precisions calculated for all
categories within the dataset. This is computed by
dividing the summation of average precisions for all
categories by the total number of categories:

mAP =2 3)

RESULTS AND DISCUSSION

The training performance of ResNet50 and
Faster-RCNN is given below in Table 1. The
proposed work achieved accuracy of 81.6% with
Faster-RCNN and 79.4% with ReesNet50. The
training results of the YOLOv5s model is given below.
The Table 2 provides a comparison between two
configurations of the YOLOv5s model in terms of
training parameters and performance metrics. The
second configuration, which were trained for more
epochs, generally outperforms the first configuration
in terms all evaluation metrics. From the results, it
seems that YOLOvV5 outperformed in terms of
accuracy.

Table 1. Training results of ResNet-50 and Faster-RCNN

Parameter ResNet50 Faster-RCNN

No. of training Steps 25,000 25,000

Training time 7 Hrs. (1 sec/step) 7 Hrs. (1 sec/step)
Loss 0.0067 0.0843

Learning Rate 0.0165 0.0185

Accuracy 79.4% 81.6%

Table 2. Training results of YOLOV5s

Parameters YOLOv5s

Epochs 100 150
Training time 0.737 hours 1.036 Hours
Precision 76.70 80.70
Recall 78.00 81.11
Accuracy (MAP@0.5) 82.90 86.40
mAP@0.5-0.95 49.70 44.80

Figure 4 given below presented inferencing /
detection results (predictions) of YOLOv5 with a
confidence level (loU) of 0.5 on validation dataset
visualize the results.

These examination outcomes were displayed
using an loU threshold with 0.5. (In this illustration,
the class label, which can be either “weed” or “crop,”
is situated to the left corner of the bounding box,
while the precision score for that class is positioned
to the right.). The curves of YOLOV5 are shown
below in figure 5. Here, the precision-recall curve of
YOLOVS5 revealed that the weed class achieved a
slightly superior average precision (AP) score of

w2 o | <) —

Figure 4. Detection results using YOLOvV5 with a
bounding box

0.877 compared to the crop class. The solid blue line
fig mAP at an 0.5 loU, calculated on test dataset. The
individual average precision (AP) scores for each
class and the overall algorithm’s mAP were reflective
of the area beneath their respective curves on the
graph.

In Figure 5 (a) A curve that represents the
relationship between precision and confidence. From
this curve it is cleared that, precision is maximum
with a confidence level of 0.877, suggesting a
significant proportion of true positive results across
all classes. (b) A curve that illustrates the connection
between recall and confidence. The recall-confidence
curve analysis provides insights into prediction
performance, exhibiting a progressive drop in recall
values as confidence levels increase. (c) A curve that
shows the interplay between precision and recall.
Here class 1(weed) achieves a slightly superior
average precision of 0.877 than class 0. (d) A curve
displaying the connection between F1 score and
confidence. The average F1 score reached to 0.81
with a confidence interval of 0.374.

During the fine-tuning of hyper parameters, the
metrics and losses are still improving and this is
depicted in Figure 6. It’s evident that the box loss,
obj loss and cls loss parameters in both the datasets
(training and validation) of the trained model
consistently decreased. Simlutaneously, the AP with
mMAP@0.5 consistently improved. YOLOV5 achieved
an mAP@0.5 score near to 0.9, signifying superior
training outcomes when using the sesame dataset.
The results were recorded in the results.csv file after
each epoch and are subsequently visualized as
results.png upon completing the process of training.
Additionally, we can create plots manually using any
results.csv file. After training our model, we achieved
less loss value in both the validation and training as
given in the following statistics in Table 3.
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Figure 5. Graphical representation of performance parameters for training via YOLOV5

Table 3. Training and validation loss

Phase box_loss obj_loss cls_loss
Training 0.0288 0.0218 0.0035
Validation 0.0215 0.0086 0.0043

Our suggested approach attained 86.40%
accuracy, 80.70% precision, and 81.11% recall in
detection of weed species in the dataset. YOLO
method outperformed both other methods ResNet
and Faster RCNN regarding evaluation metrics
precision, recall, accuracy and inferencing speed,
demonstrating the superiority of our weed detection
approach.

Similar approach was implemented by (Chen et
al. 2022) who reported that enhancing YOLOv4
model with an attention mechanism and adaptive
spatial feature fusion achieved high performance in
terms of various metrics.

Dhruw et al 2023 in their study proposed three
popular object detection algorithms for detecting
weeds in soybean plantations such as You Only Look

Once (YOLO) v3, v4, and v5. They trained YOLOv4
and v5 algorithms on publicly available soybean
dataset to recognize and discriminate the presence of
weeds on the farmland. Their simulation results have
shown that YOLOVS delivered the best weed
detection accuracy with a mean average precision of
96%.

The outcomes highlighted the efficacy of our
approach in precise discrimination between crop-
weed and detection of various weed species across
diverse agricultural scenarios. The findings shows
that of our proposed approach is effective for
accurate detection of weed in a given field. This
method is effective for controlling bermudagrass,
crabgrass, and pigweed weeds in sesame fields. We
evaluated our method using a dataset of 1300 images
cultivated in Kharif season of sesame fields of China
with weed infestation levels ranging from 0% to 80%.
Infestation was measured as the percentage of field
area covered by weeds, determined through visual
assessment of each image.



199

Indian Journal of Weed Science (2024) 56(2): 194-199

train/box_loss trainfobj_loss

0.032 —e— results
smooth 0.020

o 0 0o
o © o
w s w
d"’_"-.— *
o o
Q 0O
N N
N &

0.005
.020
o 100 o 100 o
val/box_loss val/obj_loss
0.08 0.030
0.07 3 0.12
== 0.10
0.06
0.020 oos
0.05
0.06
0.04 0.015 o
0.03
0.010 002
0.02 0.00

o 100 4] 100

(=]

Figure 6. Graphs of YOLOV5 during fine-tuning

This demonstrates the potential for our
approach to be used as a tool for farmers to manage
their fields more effectively by reducing the need for
manual work in weed control. Furthermore, it has
potential use when integrated with other precision
farming equipment, making it a cost-effective
solution for farmers. With precise selective herbicide
spraying, we can control the detected weeds. Overall,
proposed weed-plant detection system presented a
promising solution for the agricultural industry, with
the potential to improve crop yields and reduce
environmental impact.

Our future work will focus on classification of
the weeds into different species. Future efforts will
aim to integrate our system into agricultural
equipment for real-time weed detection in the field.
Additionally, combining our approach with other
precision farming techniques has the potential to
optimize crop yields and further minimize
environmental impact.
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