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Implications on soil quality and climate change mitigation

T. Ramprakash1*, B. Padmaja1, Knight Nthebere2, Vijaysree Chopde3, J.S. Mishra4 and R.P. Dubey4

Received: 17 Auguat 2024  |  Revised: 15 November 2024  |  Accepted: 18 November 2024

ABSTRACT
Conservation agriculture (CA), characterized by reduced tillage, continuous soil cover through mulching or cover cropping,
and crop rotation, is established as a sustainable approach for enhancing soil health and agricultural resilience, particularly
in cotton-based systems. Several studies indicated that CA in cotton systems played a crucial role in climate mitigation by
enhancing soil carbon sequestration and mitigating greenhouse gas (GHG) emissions. CA practices reportedly increased soil
organic carbon (SOC) levels, which helped stabilize atmospheric CO2 Additionally, CA minimized energy-intensive inputs
by reducing reliance on machinery, thereby further lowering CO2 emissions. With reduced tillage, weed management became
more challenging but remained essential for productivity, soil health, and sustainability. Research showed that weed
management practices in CA systems influenced soil physical, chemical, and biological properties. CA was found to
improve physical attributes such as bulk density, soil structure, aggregation, and hydraulic conductivity, which enhanced
porosity, root growth, and water infiltration. CA-based weed control helped in stabilizing the soil pH, reducing electrical
conductivity, increasing cation exchange capacity, and enhancing SOC, thereby improving nutrient retention. Reliance on
herbicides in CA-based cotton systems was shown to impact soil microbial diversity and enzyme activity, varying with
herbicide type and frequency of application. Some herbicides temporarily inhibit soil microorganisms and enzyme
functions (e.g., dehydrogenase, urease, phosphatases). However, mulching and organic residue retention in CA systems
demonstrated positive effects on soil microbial biomass carbon (SMBC) and microbial activity. CA practices gradually
stored carbon by sequestering CO2  in SOC, thereby stabilizing carbon and supporting biodiversity.
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 INTRODUCTION
Conservation agriculture (CA) is based on three

key principles: (1) minimal soil disturbance or no
tillage/direct seeding, (2) continuous soil cover with
crops, cover crops, or mulch, and (3) crop rotation
and cover crop use (FAO 2015). Over time,
agricultural innovations have contributed to
intensifying food production in CA-based systems
(Muoni et al. 2013). Conservation agriculture, which
recommends zero tillage ZT coupled with crop
residue mulching and diversified crop rotation, has
come forward as a sustainable management system
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that could revert physical soil degradation in resource
poor farms across very different agro-ecological
conditions (FAO 2012).

Reducing tillage intensity and frequency in CA
often leads to increased weed infestations. Compared
to conventional tillage (CT), zero tillage (ZT) results
in more weed seeds accumulating on the soil surface,
encouraging higher weed germination. Weed
infestations change with the adoption of practices
such as sowing techniques, tillage methods, weed
control strategies, residue management, and input
application.

Cotton is India’s most important commercial
crop, with the country being the world’s leading
cotton producer. India cultivates cotton in 13.06
million hectares, accounting for about 40% of the
global cotton-growing area.  About 67% of India’s
cotton is grown in rain-fed areas, while the remaining
33% is cultivated on irrigated lands (Ministry of
Textiles 2023). The adoption of conservation
agriculture (CA) in cotton (Gossypium hirsutum)
systems offers both agronomic and environmental
benefits (Ferdush et al. 2024).
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Rising temperatures, especially warmer nights,
impact the cotton, where higher night temperatures
lower yields by increasing respiration rates more than
photosynthesis, despite cotton’s drought tolerance
(Nouri et al. 2021). Climate change has already
reduced agricultural productivity growth by 21%
over the past 50 years (Ortiz-Bobea et al. 2021).
Without long-term solutions, issues such as GHG
emissions, soil degradation, and dwindling
groundwater will worsen. Thus, systemic solutions
integrating climate-smart, regenerative practices are
needed to protect soil health and sustain production
(Jat et al. 2022). South Asia’s future food security
will depend on efficient, climate-smart practices like
Conservation Agriculture (CA), which aligns with the
United Nations’ Sustainable Development Goals
(SDGs) (Roy et al. 2022). Over the last two decades,
CA has been recognized in South Asia as a strategy
for increasing productivity, profitability, soil health,
and climate resilience, contributing to “sustainable
intensification” (Bell et al. 2018).

With the reduction in tillage, reliance on
herbicides for weed management in CA cotton
increases. Herbicide use is a vital component of
cotton grown under reduced-till systems. More than
one million kg of herbicide-active ingredients are
applied annually to achieve weed-free cotton fields in
Australia (Charles 1991). Herbicide use is an essential
management practice in cotton growing and multiple
applications of a wide array of herbicides in a single
season are a common practice.

Soil health is an inherent component of
conservation agriculture maintaining the capacity of
soil to function as the dynamic living system within
the ecosystem and land management practices,
sustaining crop productivity, regulating water and air
quality, controlling soil nutrient cycling, and
improving plant and animal health (Daryanto et al.
2018, Wade et al. 2022). This review provides a brief
summary of current knowledge regarding the impact
of weed management practices on soil properties
within conservation agriculture (CA)-based cotton
cropping systems, as derived from globally published
peer-reviewed studies.

Effect of weed management in conservation
agriculture (CA) on soil attributes in cotton-
based system

Weed management practices play a crucial role
in determining soil physical properties in cotton-based
cropping systems, especially under conservation
agriculture (CA).

Soil physical properties
Bulk density: Bulk density of soils, an essential
indicator of soil compaction and porosity,
significantly influences root penetration and water
movement. Studies in the semi-arid regions of
Telangana found that conservation tillage combined
with mulching reduced bulk density compared to
conventional tillage, enhancing root growth and water
infiltration (Srinivasarao et al. 2014a). In rainfed
cotton systems mulching with crop residues
decreased bulk density, particularly in areas with
hard-setting soils, such as parts of Maharashtra and
Karnataka (Patil et al. 2017a).

Rao et al. (2016) observed that reduced tillage
systems under CA lowered bulk density by improving
soil structure and reducing compaction. Retaining
crop residues also contributed to reduced bulk
density, as increased organic matter promoted soil
biota, which enhanced porosity (López-Garrido et al.
2011). Although bulk density assessments prior to
annual tillage did not differ significantly between no-
till and conventional tillage systems, Nouri et al.
(2019) observed that cone penetration resistance was
greater under tilled systems.
Soil structure and aggregation: Soil structure,
defined by the arrangement of soil particles into
aggregates, plays a crucial role in water retention and
nutrient availability. Lal (1991) emphasized that no-
tillage and cover crops improve soil resilience by
modifying structural characteristics such as
aggregate stability, pore size distribution, and soil ped
arrangement.

In cotton-growing regions with loamy soils,
Bhattacharyya et al. (2015a) observed that mulching
with organic residues helped stabilize fine soil
particles, promoting better aggregate formation and
reducing soil erosion risks. Similarly, Sharma et al.
(2018a) reported that conservation agriculture (CA)
practices involving mulching and minimal disturbance
improved soil aggregation in Haryana, which
enhanced organic carbon sequestration and reduced
erosion. Minimal tillage and herbicide applications
significantly improved the geometric mean diameter
(GMD) of soil aggregates, highlighting the role of
minimal disturbance in maintaining soil stability (Rao
et al. 2009).

In Gujarat, Patra et al. (2016) found that
retaining cotton stalk residues increased organic
carbon content and microbial activity, which
promoted soil aggregation. Studies by Rathore et al.
(2020) in India and Ferreira et al. (2019) in Brazil also
showed that crop residue retention improved
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aggregate stability, leading to better water infiltration
and reduced erosion in cotton systems. Better soil
aggregation supports both root penetration and soil
resilience, essential for the long-term sustainability of
cotton cropping systems under CA.

Mitigating climate change involves lowering
atmospheric GHG concentrations by addressing
emission sources. Soil plays a key role in climate
change mitigation and carbon-climate interactions.
Intensive tillage practices break down soil
macroaggregates, speeding up carbon loss from the
soil and increasing GHG emissions. Whereas, CA
systems by minimizing or eliminating tillage, enhance
carbon sequestration in the soil, decrease gaseous
emissions, and support environmental sustainability.
Soil penetration resistance: Weed management
practices like mechanical weeding and frequent tillage
often increase soil compaction, leading to higher
penetration resistance. However, under CA, practices
such as herbicide use or mulching help reduce soil
compaction. Mitchell et al. (2012) found that
minimizing soil disturbance in cotton fields in the USA
led to more friable soils, lowering penetration
resistance and improving root growth and yields.

CA combined with crop residue retention
reduced soil compaction in semi-arid regions and
mulching helped retain soil moisture and reduced
surface sealing, significantly lowering penetration
resistance (Ghosh et al. 2010). Similarly, minimal
tillage with mulching in rainfed cotton fields reduced
compaction (Rajanna et al. 2015). In the Indo-
Gangetic Plains, Kaur et al. (2016) noted that residue
retention with reduced tillage lowered penetration
resistance in cotton-wheat systems by maintaining
soil porosity. Similar results in central India were
reported by Chaudhary et al. (2014), where residue
retention improved soil structure and reduced
compaction. Long-term CA practices, including
residue retention, have consistently lowered
penetration resistance (Sarkar et al. 2007, Mondal et
al. 2019).

Rao et al. (2013) found that no-tillage combined
with mulching reduced penetration resistance,
improving water-use efficiency. Similarly, Dahiya et
al. (2018) and Srinivasarao et al. (2014a) observed
deeper root growth and improved nutrient uptake due
to lower penetration resistance. Penetration
resistance increased with depth, it stayed below
harmful levels under controlled traffic systems in
irrigated cotton, promoting healthy root growth
(Bennett et al. 2017).
Hydraulic conductivity and infiltration rate:
Studies in Africa (Kassam et al. 2017) and India

(Kumar et al. 2020) highlighted that mulching
enhanced soil organic matter and reduced surface
sealing, leading to better water infiltration. No-tillage
systems under CA, paired with effective weed
control, improve soil structure and porosity,
promoting higher hydraulic conductivity (Blevins et
al. 2013). These improvements are critical for
enhancing cotton yields, particularly in arid and semi-
arid regions where water management is essential.

Using cotton stalk residues as organic mulches
in CA cotton fields reduced the weed density as well
as significantly improved hydraulic conductivity. The
increased organic matter from mulches enhanced soil
porosity, facilitating better water infiltration and
reducing surface runoff Singh et al. (2018). In
Zambia, Thierfelder and Wall (2010) found that CA
plots had significantly higher infiltration rates
compared to conventionally ploughed plots in the
cotton-maize rotation system.

Soil physico-chemical properties
CA practices like reduced tillage, mulching, and

residue retention under CA play a critical role to
stabilize pH, reduce salt accumulation, and enhance
the soil CEC by increasing organic matter.
Soil pH: Soil pH is critical for nutrient availability,
directly affecting cotton growth. Organic residues
maintained soil pH close to neutral, optimal for
cotton. Crop residues buffer pH fluctuations and
enhance microbial activity, which promotes overall
soil health (Kumar et al. 2017a). In Karnataka,
Rajanna et al. (2015) observed that reduced tillage
and mulching kept soil pH in the 6.5-7.0 range,
enhancing nutrient availability in semi-arid rainfed
cotton fields. Similarly, Doran et al. (2014) reported
that organic mulches in Australian cotton fields
stabilized soil pH.
Electrical conductivity (EC): Holland et al. (2015)
found that CA practices kept EC within sustainable
limits, improving crop performance, particularly in
arid conditions in US cotton-based systems. Crop
residue mulching in cotton reduced surface
evaporation, maintaining moisture levels and
preventing salt accumulation in surface layers (Patil et
al. 2017b). Singh et al. (2019) also noted that no-
tillage combined with organic mulching in cotton
significantly lowered EC.
Cation exchange capacity (CEC): CEC is a key
indicator of soil fertility, reflecting the soil’s ability to
retain and exchange essential nutrients. In semi-arid
ecosystems, Rao et al. (2018) observed that
conservation tillage combined with residue retention
significantly increased soil organic carbon, thereby
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enhancing soil CEC in cotton systems. Crop residue
mulching improved soil CEC in rainfed cotton fields
in central India by increasing soil organic matter
(Bhattacharyya et al. 2015a). Li et al. (2013) also
demonstrated that CA practices adopted in cotton in
China increased CEC, indicating improved nutrient
retention due to crop residue accumulation.
Soil organic carbon (SOC) and carbon pools:
Weed management practices under CA minimize the
soil disturbance and incorporate organic matter and
enhance SOC levels. Lal (1997) highlighted the role of
SOC in improving soil resilience through enhanced
nutrient cycling and aggregation. Govaerts et al.
(2009) in Mexico and Singh et al. (2020) in Gujarat
demonstrated that reduced tillage with residue
retention improved stable carbon pools, enhancing
SOC retention. Similarly in US cotton fields,
Franzluebbers et al. (2004) noted increases in SOC
and stable carbon due to reduced tillage. Lal et al.
(2015) and Blanco-Canqui et al. (2017) found similar
results in the United States and Brazil, where reduced
tillage and mulching in cotton systems increased
SOC, improving soil fertility and long-term carbon
sequestration. Conversion of all agricultural land to
conservation tillage globally could sequester 25 Gt C
over the next 5 decades which is equivalent to 1,833
Mt CO2-eq/yr, making CA one of the significant
opportunities from all sectors for mitigating global
GHG concentrations (Baker et al. 2007).

Weed management practices also influence
carbon pool dynamics. In Punjab, no-till and residue
retention enhanced both pools, promoting microbial
activity in the labile pool and carbon sequestration in
the stable pool (Sharma et al. 2017). Similarly, CA
practices in Mediterranean and sub-Saharan African
cotton systems increased stable carbon pools,
highlighting the benefits of minimal soil disturbance
on long-term carbon sequestration (Álvaro-Fuentes
et al. 2009, Six et al. 2002).

Herbicide use combined with reduced tillage
helped to maintain higher SOC by reducing
mechanical weeding and carbon oxidation (Rao et al.
2019a). Patil et al. (2017b) reported that mulching in
rainfed cotton fields increased SOC and labile carbon,
promoting soil fertility. Crop residues in cotton fields
improved labile carbon, which supports microbial
activity, and stable carbon, which contributed to
long-term carbon storage (Bhattacharyya et al.
2018).

In addition to reducing wind erosion, conservation
practices—such as no-till, reduced tillage, and cover
cropping—have been shown to decrease net
greenhouse gas emissions (Paustian et al. 1997).

Keeping plant residue on the soil surface helps protect
sequestered carbon by minimizing tillage (Schomberg
and Jones 1999). Roberts and Chan (1990) observed
lower CO2  emissions in less-intensive tillage simulations
compared to more intensive ones. Long-term no-till
combined with cover crops can lead to lower soil CO2

losses, increasing soil organic carbon levels and
contributing to the sustainability of cotton production,
especially in regions like the Texas High Plains
(McDonald et al. 2019).

Impact on nutrient availability
Weed management practices in conservation

agriculture (CA) have a significant impact on the
availability of macro and micronutrients in cotton-
based systems by improving nutrient cycling, organic
matter retention, and microbial activity.
Macronutrients: Mupangwa et al. (2017) showed
that crop residue mulching in Southern African cotton
systems increased nitrogen availability. Residue
retention and no-till practices in India reduced
nitrogen losses, improving nitrogen availability
(Parihar et al. 2018, Nthebere et al. 2023). In
systems rich in labile substrates, bacteria efficiently
decompose organic matter, accelerating nitrogen
mineralization (Moore et al. 2003, Doles et al. 2001).
Chivenge et al. (2015) reported that mulching
boosted phosphorus availability in sub-Saharan
African cotton systems through increased microbial
activity. Improved phosphorus retention in Indian
cotton fields using residue management, especially in
phosphorus-deficient soils was noticed by Dwivedi et
al. (2017). Mwila et al. (2018) noted improved
potassium availability in Zambia due to steady nutrient
release from organic residues. Similarly, Pathak et al.
(2020) reported that mulching in rainfed cotton
systems in India helped retain potassium and reduce
leaching. In addition, additional advantages of CA in
rainfed systems are reduced nutrient losses along
eroded soil with intense rainfall events (Pathak et al.
2021). Nitrogen leaching and runoff losses can also
be cutdown under CA systems and thereby reducing
the need for fertilizer N by 30–50 % (Crabtree, 2010)
and has potential to reduce nitrous oxide emissions
and mitigate climate change as well.
Micronutrients: Mulching and reduced tillage
increased zinc availability in Indian and Ethiopian
cotton systems by enhancing microbial activity
(Behera et al. 2016, Teferri et al. 2019). Similarly,
Nyamangara et al. (2014) found that reduced tillage
improved iron availability in Zimbabwean cotton
fields. Jha et al. (2019) demonstrated that residue
mulching enhanced iron availability in India by
maintaining soil moisture. Acharya et al. (2018),
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Mbatha et al. (2020) both found that CA practices
improved copper availability by promoting organic
matter retention. Saha et al. (2016), Gupta et al.
(2021) also reported improved manganese availability
in cotton systems through mulching and no-till
practices, enhancing soil moisture and microbial
activity.

Impact of CA in cotton: Reduced GHG
emissions, mitigating climate change

In India, conservation agriculture (CA) in cotton
based cropping systems could be a vital strategy for
climate mitigation, primarily by enhancing the soil’s
carbon sink, reducing greenhouse gas (GHG)
emissions, and minimizing high energy inputs. CA
achieves these goals through increased SOC levels
and lower CO2  output due to reduced machinery use.
CA practices improve soil nutrient availability, reduce
fertilizer needs and thus lowering N2O emissions.
Enhanced soil moisture retention also lowers
irrigation demand, saving electricity and reducing
associated GHG emissions. CO2  emissions primarily
result from soil tillage and fuel use, crop residue
burning, and production of fertilizers and pesticides.

Conservation tillage is particularly effective, as
intensive tillage accelerates organic matter
decomposition, increasing CO2  emissions, while
reduced tillage slows this process and retains soil
carbon (Reicosky et al. 1997). Reducing tillage
intensity can cut CO2  emissions and improve carbon
sequestration (Reicosky et al. 1997). Conservation
tillage techniques, such as leaving crop stubble on the
soil, help prevent erosion, add organic matter, and
conserve moisture (Farooq et al. 2011).

Beyond agricultural benefits, CA plays a role in
reducing GHGs, enhancing carbon storage, and
supporting biodiversity. By enabling gradual
sequestration of atmospheric CO2  into SOC, CA
practices stabilize carbon (Pathak et al. 2021). In
rainfed regions, which cover about 55% of India’s
arable land and provide around 40% of food
production, degraded soils with low SOC and nutrient
deficiencies are common. Cotton, widely grown in
these dryland areas, benefits substantially from CA
practices that improve soil health and sustain
productivity.

Impact on soil microbial population, activity and
diversity

Soil microorganisms contribute immensely to
soil health and quality, and secrete soil enzymes
which play a pivotal role in nutrient cycling and
transformation in the soil (Wu et al. 2016).

Application of herbicides manifested adverse effects
on non-target organisms including microorganisms
such as bacterial, fungal, actinomycetes and free-
living nitrogen-fixing organisms i.e., Azotobacter and
Azospirillum (Latha and Gopal 2010). Herbicides may
not influence the overall size of the microorganism
pool but selectively affect specific groups of biota
resulting in modifying the balance of soil microbial
populations and consequently nutrient availability,
pest & disease incidence and crop growth (Gupta and
Roberts 2003). However, Wardle and Parkinson
(1990) reported that herbicides may increase or
stimulate the population growth of microorganisms
and activities given the ability of the microorganisms
to utilize herbicides as a source of carbon and other
required nutrients.

A study by Chaudhari et al. (2020) in a cotton-
greengram system showed that inter-cultivation
combined with hand weeding (IC + HW) at various
intervals significantly increased soil microbial
population and activity, particularly when followed by
pendimethalin application. The same observations
were also reported by Sivakumar et al. (2021).
Nthebere et al. (2024) observed a decline in microbial
activity in cotton-maize-Sesbania CA systems due to
herbicide application, with recovery noted after 60
days as toxicity decreased. This aligned with the
study by Bowels et al. (2014) and Jarvan et al.
(2014). Such patterns suggest that herbicides at
recommended rates do not permanently inhibit
microbial activity (Lupwayi et al. 2004, 2009;
Nalayini et al. 2013, Tejashree et al. 2018). The
influence of pre-emergence herbicide diuron was
higher in black soils than in red soils on soil bacterial
counts (Faizullah et al. 2020a).

Conservation agriculture (CA) practices are
associated with increased microbial diversity due to
reduced tillage, promoting fungal dominance in
systems with surface crop residue (Frey et al. 2003,
Moore et al. 2003, Paustian et al. 2000, Holland
2004). Blanchart et al. (2004) and Six et al. (2006)
emphasized the role of these organisms in creating
stable soil aggregates and organo-mineral complexes.
Earthworm activity, in particular, is stimulated by the
absence of tillage, leading to reduced physical damage
and habitat disturbance (Castellanos-Navarrete et al.
2012).

 Research  has  shown  that  climate  change
markedly influences microbial community
composition and biomass (Ochoa-Hueso et al. 2018),
enzyme activity levels (Burns et al. 2013), and the
functional traits of soil microbes (Bai et al. 2019).
These shifts in microbial communities due to climate
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change have profound implications for nutrient
cycling processes. Yet, most studies have primarily
examined these effects in natural or semi-natural
ecosystems, leaving significant gaps regarding the
impact of climate change on soil microbial
communities within agroecosystems (Poll et al.
2013). Notably, bacteria within microbial
communities exhibit greater sensitivity to water
stress, such as drought, compared to fungi (De Vries
et al. 2012). However, substantial uncertainty
remains about the specific effects of climate change
on soil enzyme activity.

Soil enzyme activity
Soil enzymes play a pivotal role in energy

transfer through the decomposition of soil organic
matter, nutrient recycling and are vital indicators of
soil health, soil pollution and ecological restoration
(Wu et al. 2016). In the studies on Bt cotton fields
treated with various herbicides, it was reported that
pendimethalin-treated soils exhibited higher soil
dehydrogenase activity (DHA), indicating lower
toxicity compared to other herbicides (Atri et al.
2006, Veena et al. 2010, Tejashree et al. 2018).
Srinivasarao et al. (2014b) observed increased DHA
in cotton systems under no-till and mulching
practices due to improved microbial conditions in the
soil supported from the study by Wang et al. (2018)
from China. Zhang et al. (2015) reported higher
urease activity under reduced tillage in Australia. Rao
et al. (2019b) observed increased urease activity,
where crop residue mulch combined with minimal
tillage provided a conducive environment for nitrogen
retention and microbial activity. Application of diuron
as pre-emergence herbicide to cotton significantly
reduced the soil urease activity till 30 DAS (Faizullah
et al. 2020b).

Sharma et al. (2018b) found significantly higher
phosphatase activity in no-till systems with crop
residue retention in Punjab, India, while García-Ruiz
et al. (2012) observed in Mediterranean cotton fields.
In conservation agriculture (CA), Sebiomo et al.
(2011) reported increased acid phosphatase (AcP)
activity in Bt cotton treated with pendimethalin,
attributed to microbial adaptation to the herbicide. A
46% increase in AcP and a 61% increase in alkaline
phosphatase activity under no-till systems, indicating
that reduced tillage boosts phosphatase activity
(Balota et al. 2004). Activity of soil acid phosphatase
enzyme was inhibited by the application of diuron
where the reduction of activity increased with the
increase in dosage of the chemical to cotton crop.
While the activity of the alkaline phosphatase
remained unaffected (Varsha et al. 2019).

Fluorescein diacetate (FDA) hydrolysis, a
measure of overall microbial activity, was
significantly higher in cotton fields under CA with
mulching in Maharashtra (Kumar et al. 2017b). This
was linked to improved microbial habitat, a finding
confirmed by Paz-Ferreiro et al. (2011) in Spanish
cotton systems under CA, where mulching supported
higher microbial activity. Beta-galactosidase activity,
crucial for organic carbon turnover, was found to be
enhanced by mulching in Indian cotton systems
(Bhattacharyya et al. 2015b). Kandeler et al. (2017)
reported similar results in German cotton fields,
where reduced tillage and mulching promoted
microbial activity and organic matter decomposition.

Climate warming could accelerate enzyme
actions (Wallenstein and Weintraub 2008), but it may
also reduce enzyme production by soil micro-
organisms (Allison et al. 2010) and heighten enzyme
denaturation (Nottingham et al. 2016). Additionally,
drought conditions can influence enzyme activity, as
microorganisms under drought stress tend to allocate
nutrients and energy towards synthesizing osmolytes
and maintaining internal stability rather than enzyme
production (Schimel 2018).

Effects on SMBC and SMBN
Soil microbial biomass carbon (SMBC) and

nitrogen (SMBN) are essential indicators of soil
microbial activity and overall health, particularly in
conservation agriculture (CA) systems. Yadav et al.
(2015) from Madhya Pradesh (India) found that
IWM significantly increased SMBC and SMBN in
cotton systems by providing organic matter from
cover crops, while reduced herbicide use minimized
microbial suppression. Similarly, higher SMBC and
SMBN in IWM-managed cotton systems compared
to conventional systems, attributed to increased
nitrogen mineralization and carbon cycling (Patel et
al. 2018). Rusinamhodzi et al. (2018) further
demonstrated that combining herbicide use with
cover cropping enhanced microbial biomass in cotton
systems, mitigating the negative impacts of herbicide-
only systems. Conversely, continuous glyphosate
use, without organic matter input, led to reduced
SMBC and SMBN over time (Weaver et al. 2007).

Gupta and Roberts (2003) reported that SMBC
decreased after herbicide application but increased as
the cotton season progressed, suggesting cotton-
induced stimulation of microbial activity. Nthebere et
al. (2024) further supported these results, showing
varying effects of herbicides on SMBC. Long-term
adoption of CA practices, including residue retention,
boosts microbial biomass. Lal (2015) observed
significantly higher SMBC and SMBN in Indian
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cotton systems that had adopted CA for over a
decade. Silva et al. (2019) reported long-term
benefits in cotton systems, highlighting the role of
reduced tillage and cover crops in enhancing
microbial activity. In India, Srinivasarao et al.
(2014b), Nthebere et al. (2024) demonstrated that
no-till practices with residue retention significantly
increased SMBC and SMBN in cotton systems, while
Bhattacharyya et al. (2013) confirmed the positive
effects of reduced tillage in rainfed cotton areas.
Franzluebbers et al. (1999), Das et al. (2018)
reported similar findings, with no-till and leguminous
cover crops like cowpea and pigeonpea significantly
increasing SMBC and SMBN in cotton systems.

Several studies have reported metabolic quotient
values (qCO2) i.e., soil organic carbon per unit
microbial biomass were higher under herbicides
treatments than in the control soils (without herbicide
treatment) in cotton CA-based system (Gupta and
Roberts, 2003). A reduction in SMBC contents and
increase in qCO2 values generally indicates a stress on
the growth of microbial community. As the microbial
community recovered from herbicide impacts by the
final sampling the qCO2 values lowered (Nthebere et
al. 2024).

Weed dynamics and herbicide efficacy changes
with climate change under CA

Climate change is marked by rising temperatures
and unpredictable precipitation which influence the C3

and C4 species differently. In CA systems, where
mechanical weed control is limited, dependence on
herbicides grows. Herbicide effectiveness varies with
factors such as light, CO2  levels, temperature,
moisture, and wind:
Light – High light intensity keeps stomata open,
enhancing foliar herbicide uptake. More branching
increases surface area for herbicide application,
though thicker leaves under high light can impede
herbicide diffusion (Riederer and Schoneer 1985).
CO2 – Elevated CO2  can reduce stomatal
conductance by up to 50%, altering herbicide
effectiveness due to leaf thickening and fewer open
stomata, which limit penetration. Glyphosate
efficacy, for instance, declines in C4 weeds with
increased root-to-shoot ratios under high CO2  (Ziska
2008, Ziska et al. 2004).
Temperature – Higher temperatures can decrease
cuticle viscosity, enhancing herbicide absorption,
though they may also speed up herbicide metabolism,
reducing efficacy (Price 1983, Kells et al. 1984).
Precipitation and soil moisture  – Low soil
moisture, common in cotton-based systems, reduces

herbicide uptake due to greater adsorption to soil
particles (Dao and Lavy 1978). Moisture stress
further limits herbicide diffusion and absorption
(Kogan and Bayer 1996).

Soil quality
Soil quality refers to the ability of soil to function

within an ecosystem to sustain biological
productivity, maintain quality of the environment, and
enhance plant and animal health (Doran and Parkin
1994). Soil quality index (SQI) is widely used to
assess these aspects, integrating physical, chemical,
and biological properties of soil. Agricultural
practices, particularly tillage, play a crucial role in
influencing these properties, with no-till systems
generally showing improved soil structure and overall
quality compared to conventional tillage (Mulat et al.
2021). Assessing soil quality, especially under
conservation agriculture (CA), helps in evaluating
degraded soils and understanding changes brought by
different management practices (Tesfahunegn 2014).
While soil quality cannot be measured directly, SQI
provides a comprehensive measure by quantifying
soil’s physical, chemical, and biological properties.
This index relies on appropriate indicators of soil
functions, and methods like Principal Component
Analysis (PCA) are used to handle data dimensionality
(Rezaei et al.2006). Numerous studies have
demonstrated the positive impact of no-till practices
on soil quality, although their effectiveness depends
on adequate residue input, which can be limited in
low-residue cropping systems (Blanco-Canqui et al.
2011, Wang and Shao 2013).

Cover crops offer significant benefits to
agricultural ecosystems, improving soil organic
carbon (SOC) sequestration, microbial activity,
moisture retention, and reducing soil erosion and
nutrient leaching. These improvements in soil health
and quality are well-documented (Alhameid et al.
2019, Nouri et al. 2019, Singh et al. 2022). Parihar et
al. (2020) found significantly higher SQI under
permanent bed/zero tillage systems compared to
conventional tillage, with strong correlations between
SOC and other soil parameters.

In a comparative study, Edralin et al. (2017)
reported better soil quality with adoption of CA
compared to conventional tillage. This improvement
was attributed to increased soil organic carbon,
nitrogen, higher soil moisture retention, and lower soil
temperature during dry periods, highlighting the
benefits of CA for enhancing soil health. Nthebere et
al. (2024) noted that, considering both crop
productivity and soil quality, IWM was the better
weed management option compared to sole chemical
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weed management resulting in the higher productivity
for the cotton-maize system and sustained soil
quality. Acosta Martinez et al, (2023) found the
potential of no-tillage and crop residue mulching to
improve soil health in cotton production in semiarid
tracts, which are more prone to climate change
impacts, and a platform for a soil health evaluation
that links different soil health pointers with functions
related to soil organic carbon, soil water, and nutrient
cycling.

Conclusions
CA practices are essential for enhancing soil

health and preventing degradation in cotton-based
systems. Weed management practices under CA
significantly affect soil enzyme activities, including
dehydrogenase, urease, and phosphatase. Herbicides
may temporarily suppress microbial activity and
enzyme functions, though these effects are often
short-lived. Balancing herbicide use with sustainable
practices like mulching and crop rotation is crucial to
maintain soil quality and productivity in cotton-based
CA systems. Further research into the impacts of
weed management on the soil microbiome and
nutrient cycling is essential to improve the
sustainability of these systems. Conservation
agriculture (CA) in cotton is a sustainable farming
approach that recycles crop residues, uses less water
and energy, and reduces global warming. In addition
to its benefits as an agricultural development strategy,
conservation agriculture (CA) addresses climate
change challenges and aids significantly in climate
change mitigation. This includes reducing GHG
emissions, promoting carbon sequestration, and
supporting the conservation of soil biodiversity.
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